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1 Introduction

This document describes some of the interoperable features in LIS and how to
use/extend them. The following sections describe the general development and
documentation practices recommended for using and extending LIS software,
followed by the guidelines for using the extensible features in LIS for customiza-
tion and improved functionality.
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2 Background

This section provides some general information about the LIS project and land
surface modeling.

2.1 LIS

Land surface models provide characterizations of the water and energy ex-
changes and biogeochemical processes of the soil-vegetation-snowpack medium.
A realistic representation of these processes is critical for improving the under-
standing of the boundary layer and land-atmosphere interactions. The develop-
ment of LIS has been motivated by the need to develop an infrastructure that
combines the use of land surface simulation, available observations and the re-
quired computing tools for accurate land surface prediction. As discussed in [6],
LIS integrates and extends the capabilities of Land Data Assimilation Systems
(LDASs) such as the 25km Global Land Data Assimilation System (GLDAS)
and the 12.5km North American Land Data Assimilation System (NLDAS). LIS
is primarily an infrastructure for operating an ensemble of land surface models
with capabilities for data integration and assimilation, over user-specified re-
gional or global domains. The new phase in LIS development is to extend its
capabilities by linking with other earth system components, enabling coupled
systems that can model land-atmosphere interactions more effectively.

LIS is designed using advanced software engineering principles, and features
a highly modular, flexible, object oriented, component-based framework. Fig-
ure 1 shows the software architecture of LIS. The core of the system consists
of structures to manage generic utilities such as time, configuration, geospatial
transformations, I/O, parallel computing constructs, logging, etc. These struc-
tures provide generic, model-independent support for high performance comput-
ing, resource management, data and I/O handling, and other functions. The
LIS core controls the overall program execution and manages the inclusion of
user-defined extensible components through several related abstractions. These
abstractions, shown in the middle layer, include generic representations of land
surface models, data assimilation schemes, meteorological forcing schemes, do-
mains, running modes etc. The specific user defined components extend these
abstractions. For example, Figure 1 shows a number of land surface models
(Noah, CLM, HySSIB, Catchment) implemented in LIS through the land sur-
face model abstraction. By providing a structure that allows the reuse and
community sharing of modeling tools, LIS allows rapid prototyping and devel-
opment of new applications. These interoperable features in LIS has enabled
the incorporation of a growing suite of community LSMs, meteorological forc-
ing analyses, different sources of land surface parameters, and data assimilation
schemes. The system also allows for the plug and play of various user-defined
components and has enabled several intercomparison studies involving land sur-
face models, parameters, and assimilation schemes.

Please refer to [6, 5, 7] for details on the design of LIS. This document
provides instructions on the use of the “plug-and-play” features or abstractions
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Figure 1: Software architecture of the LIS framework

5



D
RA

FT

3 Coding and Documentation Conventions

This section describes some of the coding and documentation conventions [1]
that are helpful for developers of LIS.

3.1 Coding conventions

LIS is implemented using the Fortran 90 and C programming languages. Since
different Fortran compilers parse source files differently depending on the file
extension (such as .f, .f77, .F, .f90, and .F90) the task of porting code to different
platforms is a difficult process. Therefore, Fortran additions and contributions
to LIS code are expected to be written using the Fortran 90, and the sources
files must have an F90 extension. Some of the style guidelines followed in LIS
are as follows:

• Preprocessor: C preprocessor (cpp) is used wherever the use of a language
preprocessor is required. The Fortran compiler is assumed to have the
ability to run the preprocessor as part of the compilation process. The
preprocessing tokens are written in uppercase to distinguish them from
the Fortran code.

• Loops: All loops in Fortran are structured using do-enddo constructs as
opposed to numbered loops.

• Modules: Modules must be named the same as the file in which they reside.
This is enforced due to the fact that make programs build dependencies
based on file names.

• Implicit none: All variables in different modules should be explicitly typed,
and this should be enforced by the use of the “implicit none” statement.

• Standards: For consistency, for readability, and for use with other tools.
LIS code must follow these coding standards. Note that code integrated
into LIS from other sources, say University of Washington’s VIC land
surface model, should not be rewritten to conform with these coding stan-
dards.

– Line length: Lines shall be not exceed 80 characters in length. Lines
longer than 80 characters must be broken with a newline (i.e.; press
Enter) as opposed to soft line wrapping.

– Indentation: Code blocks (e.g.; subroutines, if blocks, do loops) are
expected to be indented for readability. Indentation shall be 3 spaces
per level – no Tab characters.

– Documentation: All subroutines/functions shall be documented within
the code, referred to as the in-line documentation. See Section 3.2
for specific instructions.
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3.2 Documentation conventions

LIS uses an in-line documentation system that allows users to create both web-
browsable (html) and print-friendly(ps/pdf) documentation. Each function,
subroutine, or module includes a prologue instrumented for use with the ProTex
auto-documentation script [2]. The following examples describe the documen-
tation templates used in LIS.

Review templates and add examples.
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Templates for routines that are not internal to modules.

!BOP

!

! !ROUTINE:

!

! !INTERFACE:

!

! !USES:

!

! !INPUT PARAMETERS:

!

! !OUTPUT PARAMETERS:

!

! !DESCRIPTION:

!

! !BUGS:

!

! !SEE ALSO:

!

! !SYSTEM ROUTINES:

!

! !FILES USED:

!

! !REVISION HISTORY:

!

! 27Jun02 Username Initial specification

!

!EOP

!-------------------------------------------------------------------------
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Template for a module :

!BOP

!

! !MODULE:

!

! !PUBLIC TYPES:

!

! !PUBLIC MEMBER FUNCTIONS:

!

! !PUBLIC DATA MEMBERS:

!

! !DESCRIPTION:

!

! !REVISION HISTORY:

!

! 27Jun02 Username Initial specification

!

!EOP
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Template for a C file:

//BOP

//

// !ROUTINE:

//

// !INTERFACE:

//

// !USES:

//

// !INPUT PARAMETERS:

//

// !OUTPUT PARAMETERS:

//

// !DESCRIPTION:

//

// !BUGS:

//

// !SEE ALSO:

//

// !SYSTEM ROUTINES:

//

// !FILES USED:

//

// !REVISION HISTORY:

//

// 27Jun02 Username Initial specification

//

//EOP

//-------------------------------------------------------------------------
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4 Customizable Features in LIS

The LIS core is designed with extensible interfaces for facilitating easy incor-
poration of new features into LIS. The LIS core uses advanced features of the
Fortran 90 programming language, which are especially suitable for object ori-
ented programming. The object oriented style of design adopted in LIS enables
the core to provide well defined interfaces or “plug points” for enabling rapid
prototyping and development of new features and applications into LIS.

The LIS core includes a number of abstractions including:

• surface model: Interfaces for adding new land and water (such as lake)
surface models.

• meteorological forcing: Interfaces for adding new model forcing schemes.

• data assimilation: Interfaces for specifying assimilation of observational
data using data assimilation algorithms.

The actual implementation of a component uses these abstractions following the
concept of polymorphism.

4.1 What is polymorphism?

The modules in LIS are constructed using a component-based design, with each
module/component designed to abstract the behavior of a certain program seg-
ment. The interfaces are designed to emulate the concept of polymorphism from
the object oriented software design world. As the definition of the word implies,
polymorphism is the state of being able to assume different forms. A polymor-
phic method is typically defined with minimal and common functionality, and
specific implementations of the methods override the polymorphic method. Fig-
ure 2 shows an example of polymorphic behaviour in the real world. A car class
is a polymorphic module, and sports car and van are specific instances of the
abstract, car class. The car class might contain a move method, which could
be overwritten with a different behaviour in the sports car and van classes.
In object oriented programming, the move method is always invoked on the
polymorphic class (car), and depending on the specific instance used in the
simulation, the move call will be delegated to the move call of the sports car or
the move call of the van class.

Unfortunately, true polymorphism and the automatic delegation of the poly-
morphic methods to the specific instances are true object oriented features.
Since Fortran 90 is not an object oriented language, polymorphism can only
be simulated only in software. This is achieved by the use of virtual function
tables. The virtual function tables maintain a list of specific instances of each
polymorphic method. Since Fortran is not an object oriented language, the task
of adding the functions or “registering” the functions into the virtual function
tables needs to be performed to simulate polymorphism. The C language allows
the capability to store functions, table them, and pass them as arguments. The
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car

sports car van

Figure 2: Example of polymorphic behaviour

Fortran 90 programming language allows passing of functions as arguments. By
combining these features of both languages, LIS uses a complete set of opera-
tions with function pointers.

4.2 Polymorphism in LIS

Polymorphism is simulated in LIS using virtual function tables and the actual
delegation of the calls are done at run-time by resolving the function names from
the table. Figure 3 illustrates how the function tables work. A function is stored
in the table typically by a register function, that simply stores the pointer to
the function at the specified index. The call register(1,f1) stores the function
f1 into the function table with an index of 1 and the call call register(2,f2)
stores the function f2 into the function table with with an index of 2. When
the function needs to be accessed, a generic call is made which resolves into a
specific call depending on the index specified. In this case, the call retrieve(1)
invokes the method f1 from the table and the call call retrieve(2) invokes the
method f2. This implementation helps in defining generic calls in programs. In
the following, “registry” is used to refer to a function table.

In the LIS architecture, the customizable features listed in section 4 are
implemented using the virtual function tables. For each customizable feature,
abstract interfaces are provided by LIS, with the specific implementations and
the addition to the corresponding registry left to the user. Once the functions are
implemented and added to the registry, the appropriate delegation and linkages
of the calls are handled by the LIS core software. Further, when a new feature
is implemented in LIS, the user does not necessarily have to be familiar with the
implementation details of the rest of the software. This feature enables rapid
prototyping and testing of new applications into LIS.

The LIS 7.0 source code contains a number of sub directories, which are
organized as components. The top-level organization of the source (src) is listed
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1 f1()

Function Table

Index Function

2 f2()

. .
 . 

.

. .
 . 

.

Register step

call register(1,f1)
call register(2,f2)

Retrieval step

call retrieve (1)

call retrieve (2)

returns f1()

returns f2()

Figure 3: Example of a function table implementation

in Table 1. (See LIS’ User’s Guide for a comprehensive description of LIS’ source
organization.) The plugins directory contains modules where the registries for
each polymorphic method are defined.
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Directory Name Synopsis

apps Directory containing various applications that use LIS
arch Directory containing the configurable options for building the LIS executable
configs some sample LIS configuration files
core core routines in LIS
dataassim Top level directory for data assimilation support
domains Directory containing the domains of various map projections / custom grids
interp Generic spatial and temporal interpolation routines
irrigation Top level directory for irrigation support
lib External libraries supplied with the LIS source code
make Makefile and needed header files for building LIS executable
metforcing Top level directory for meteorological forcing methods
offline Contains the main program for the offline mode of operation
optUE Top level directory for optimization support
params Directory containing implementations of various land surface model parameters
plugins Modules defining the function table registry of extensible functionalities
routing Directory containing various routing schemes
rtms Directory containing coupling routines to various radiative transfer models
runmodes Directory containing the various running modes in LIS
surfacmodels Directory containing implementations of various surface models (land, lake, openwater)
suppforcing Directory containing the various supplemental forcing implementations
testcases Testcases for verifying various functionalities
utils Miscellaneous helpful utilities

Table 1: Top-level directory structure of LIS source code
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5 Generic data structures in LIS

In LIS, the land surface model executions are defined on a fundamental unit
called ‘tile’. Each of these tiles can be mapped to a grid point on the modeling
domain. LIS also supports nesting or concurrent execution on multiple domains.
Each of these nests consists of a number of model tiles. The following are the
key LIS variables that are related to the model execution space:

LIS rc%ntiles(n) Number of tiles, for each processor, for the nest n
LIS rc%glbntiles(n) Number of tiles for the whole domain, for the nest n
LIS rc%npatch(n,m) Number of tiles, for each processor,

for the nest n and for the surface model type m

LIS rc%glbnpatch(n,m) Number of tiles for the whole domain,
for the nest n and for the surface model type m

LIS rc%ngrid(n) Number of grid points, for each processor, for the nest n
LIS rc%glbngrid(n) Number of grid points for the whole domain, for the nest n
LIS rc%lnc(n) Number of columns in the domain, for each processor, for the nest n
LIS rc%lnr(n) Number of rows in the domain, for each processor, for the nest n
LIS rc%gnc(n) Number of columns in the domain, for the whole domain, for the nest n
LIS rc%gnr(n) Number of rows in the domain, for the whole domain, for the nest n

Note that
∑

mLIS rc%npatch(n,m) = LIS rc%ntiles(n). Also note that when
a single processor is used, the LIS rc%ntiles(n), LIS rc%npatch(n,m), LIS rc%ngrid(n),
LIS rc%lnc(n), and LIS rc%lnr(n) will be exactly equal to LIS rc%glbntiles(n),
LIS rc%glbnpatch(n,m), LIS rc%glbngrid(n), LIS rc%gnc(n), and LIS rc%gnr(n),
respectively. Further, when no subgrid-tiling is used, the tile space and grid
space are exactly equivalent (LIS rc%ntiles(n) equals LIS rc%ngrid(n)). These
indices also represent the grid and tile space domain decomposition.

LIS domain(n)%gindex defines the mapping between the grid location and
the tile index.

tileindex = LIS_domain(n)%gindex(col,row)

where col and row are the column and row index of the grid point and tileindex

defines the index of the tile.
The src/core directory contains a number of modules that provides variables

that may be required while defining land surface model specific routines. Some
of the useful modules and the variables provided by them are listed below. For
more details, please refer to the source code documentation.
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Module name Provides
LIS timeMgrMod Variables and routines for time management
LIS coreMod LIS domain: representations of lis domain

including tiles, grids and 2D mappings
LIS config: overall runtime configuration
LIS rc: representation of overall
simulation control

LIS domainMod Variables and routines that define domain
decomposition

LIS constantsMod specification of global constants
LIS gribMod grib support implementations
LIS historyMod generic routines for parallel I/O

16
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6 File I/O Support in LIS

LIS provides support for performing file input and output (i/o). This support
is contained is the core/LIS fileIOMod.F90 and the core/LIS logMod.F90 files.

The core/LIS fileIOMod.F90 contains support for reading 2D gridded data
from a direct access binary file.

The core/LIS logMod.F90 file contains support for writing into the diagnos-
tic output file, typically named lislog, and for managing Fortran unit numbers.

Please consult these files when adding a new feature into LIS that requires
file i/o.

Support for model output is provided by the core/LIS historyMod.F90 and
the core/LIS histDataMod.F90 files.

6.1 Adding Log Messages to the Diagnostic Output File

The diagnostic output file, typically named lislog, contains status messages gen-
erated by LIS at run-time. To add such messages into the diagnostic output
file, one must make the LIS logunit variable available. E.g.,

use LIS_logMod, only : LIS_logunit

Then one simply writes to the LIS logunit. E.g.,

write(LIS_logunit,*) ’My status message.’

LIS also provides support for filtering, at run-time, the status messages that
are generated. The level of filtering is specified in the run-time configuration
file, lis.config. It is referenced in the code through the LIS rc%plevel variable.
Please read the documentation contained in the configs/lis.config file. To use
this filtering, one must make the LIS rc%plevel variable available. E.g.,

use LIS_coreMod, only : LIS_rc

Then one places the status message in an if-block. E.g.,

if ( LIS_rc%plevel .ge. 2 ) then

write(LIS_logunit,*) ’My debugging status message.’

endif

The higher the plevel, the more messages that are generated. Please use a
greater-than-or-equal-to test to evaluate the plevel.

6.2 Managing Fortran Unit Numbers

Using hard-coded unit numbers in a Fortran open statement can be problematic,
especially for a large program written by many different people. When Fortran
processes an open statement, it will close any file already connected to the unit
number, and it will then open the new file and connect the new file to the unit
number. Thus, when using hard-coded unit numbers, it is possible for one part
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of LIS to open a file and for a different part of LIS to inadvertently close that
file while trying to open another one.

To avoid this problem, LIS maintains a list of available unit numbers, and LIS
provides two methods for interacting with this list. The LIS getNextUnitNumber

function returns an available unit number. The LIS releaseUnitNumber rou-
tine returns the given unit number to the pool of available numbers.

To use the unit number management routines, one must make the LIS getNextUnitNumber

and the LIS releaseUnitNumber methods available. E.g.,

use LIS_logMod, only : LIS_getNextUnitNumber, LIS_releaseUnitNumber

Then one calls these methods as in this example.

ftn = LIS_getNextUnitNumber()

call LIS_readData(n,ftn,LIS_rc%topo_gridDesc(n,:),go)

call LIS_releaseUnitNumber(ftn)

18
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7 How to add a new land surface model in LIS

The plugins directory contains the LIS lsm pluginMod module that can be used
to customize and define land surface models in LIS. The LIS lsm pluginMod
contains a LIS lsm plugin method that defines a number of registries to capture
the basic offline operations of a land surface model. The registries can be used
to define functions to perform the following tasks:

• initialization:
Definition of land surface model variables, allocation of memory, reading
run-time parameters, etc.

• setup:
Initialization of land surface model parameters.

• dynamic setup:
Routine to initialize or update time dependent parameters.

• run:
Routine to execute land surface model for a single timestep.

• write restart:
Routine to write restart files

• read restart:
Routine to read restart files

• transfer of forcing data to model tiles:
Routine that provides an array of forcing variables for each gridcell.

• Finalize:
Routine that cleanups any allocated memory structures

A new LSM (lets say Noah) must implement each of the above 8 methods
for successful incorporation in LIS.

The following example shows how the registry functions are defined for the
Noah 3.3 LSM.

call registerlsminit(trim(LIS_noah33Id)//char(0),noah33_lsm_ini)

call registerlsmsetup(trim(LIS_noah33Id)//char(0),noah33_setup)

call registerlsmdynsetup(trim(LIS_noah33Id)//char(0),noah33_dynsetup)

call registerlsmrun(trim(LIS_noah33Id)//char(0),noah33_main)

call registerlsmf2t(trim(LIS_noah33Id)//"+"&

//trim(LIS_retroId)//char(0),noah33_f2t)

call registerlsmrestart(trim(LIS_noah33Id)//char(0),noah33_readrst)

call registerlsmwrst(trim(LIS_noah33Id)//char(0),noah33_writerst)

call registerlsmfinalize(trim(LIS_noah33Id)//char(0),noah33_finalize)
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The LIS noah33Id refers to the string label assigned to Noah 3.3. The file
LIS pluginIndices.F90 defines the conventions used in LIS. Please note that
these can be modified by the user if a different convention is to be followed.

The registry functions defined for noah are:
noa33 lsm ini Initialization for Noah
noah33 setup Sets up Noah’s parameters
noah33 dynsetup Sets up Noah’s time dependant parameters
noah33 main Runs the Noah model on the model tiles for a single timestep
noah33 readrst Reads the Noah restart files
noah33 writerst Writes Noah’s restart files
noah33 f2t Transfers forcing data to Noah model tiles
noah33 finalize Cleanups up allocated memory structures

The first step is to organize the LSM code so that the actual model physics
can be isolated to the execution on a single model tile, for a single timestep.
The subroutine SFLX in Noah represents such a routine. The call to the model
physics should be defined in noah33 main as follows:

do t=1,LIS_rc%npatch(n,m)

call SFLX ( <arguments> )

enddo

Since the model prognostic variables, input parameters, and diagnostic out-
puts need to be accessed for initialization, output, model restart and other
functions, they are defined as module variables in noah33 module, which repre-
sents the variable definition for a single model tile. In the initialization routine
(noah33 lsm ini, the memory structures are allocated as shown below (similar
to the LIS structure, memory for the nests are allocated and then memory for
model tiles are allocated). Finally the noah33 readcrd call reads the run-time
specifications that are specific to Noah LSM. These config options specify vari-
ables such as locations of land surface model specific parameter files, restart
writing intervals, initial conditions, etc. The routine to read these variables is
typically done during initialization of the land surface model.

allocate(noah33_struc(LIS_rc%nnest))

call noah33_readcrd()

do n=1,LIS_rc%nnest

allocate(noah33_struc(n)%noah(LIS_rc%npatch(n,LIS_rc%lsm_index)))

enddo

The noah33 setup routine is used to define the land surface parameters used
in Noah. These include parameters related to vegetation and soils. noah33 dynsetup

performs a similar function, to setup parameters that are time-dependent. These
include the use of monthly greenness and quarterly albedo climatologies.

noah33 readrst and noah33 writerst are restart reading and writing rou-
tines for Noah, respectively. These subroutines read and write the list of prog-
nostic variables for Noah to a file, so that the model can be restarted from such
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a file. The variables are written out in tilespace, using the generic routines
specified in LIS historyMod file.

noah33 f2t is a routine that translates the input forcing to the actual Noah
model tiles. The forcing variables processed by LIS are in tile space so that the
translation is a 1-to-1 mapping.

Finally the noah33 finalize is a cleanup routine that cleanly deallocates
the memory structures allocated specific to Noah.

This set of routines completes the incorporation of Noah LSM in LIS. A
number of LSMs are implemented in LIS using this plugin style.

7.1 How to add an additional output variable in LIS

LIS provides support for writing many model output variables. The configs/MODEL OUTPUT LIST.TBL
file lists all the output variables that LIS supports. When reviewing this list,
please refer to the Assistance for Land Modeling Activities (ALMA; [3])) stan-
dard. The variables in the MODEL OUTPUT LIST.TBL file correspond quite
obviously to those described by ALMA. When adding a new land surface model,
please follow the ALMA convention when processing the model’s output. Note
that LIS does not yet support every variable listed by ALMA and that ALMA
does not describe every variable of hydrological interest. Thus additional mod-
ifications to the LIS code may be necessary to complete the implementation of
the new land surface model.

The core/LIS historyMod.F90 file and the core/LIS histDataMod.F90 file
provide the support for writing model output. Let’s consider adding net short-
wave radiation, SWnet.

1. Add an entry for the new output variable to the configs/MODEL OUTPUT LIST.TBL
file.

Swnet: 1 W/m2 DN 1 0 0 1 111 10 # Net shortwave radiation (W/m2)

Please see LIS’ Users’ Guide for a description of the configs/MODEL OUTPUT LIST.TBL
file.

2. Add a new LIS MOC declaration for the new output variable to the
core/LIS histDataMod.F90 file.

public :: LIS_MOC_SWNET

3. Initialize the new LIS MOC entry in the core/LIS histDataMod.F90 file.

integer :: LIS_MOC_SWNET = -9999
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4. Mimic the logic in the core/LIS histDataMod.F90 file to read the output
configuration file (configs/MODEL OUTPUT LIST.TBL, referred to as
modelSpecConfig) and to call the register dataEntry subroutine.

call ESMF_ConfigFindLabel(modelSpecConfig,"Swnet:",rc=rc)

call get_moc_attributes(modelSpecConfig, LIS_histData(n)%head_lsm_list, &

"Swnet",&

"surface_net_downward_shortwave_flux",&

"net downward shortwave radiation",rc)

if ( rc == 1 ) then

call register_dataEntry(LIS_MOC_LSM_COUNT,LIS_MOC_SWNET,&

LIS_histData(n)%head_lsm_list,&

n,nunits=1,ntiles=ntiles,unittypes=(/"W/m2"/),&

ndirs=2,dirtypes=(/"UP","DN"/),&

form=1,gribSFC=1,gribLvl=1,&

model_patch=.true.)

endif

5. Mimic the logic in the surfacemodels/land/noah.3.3/noah33 main.F90 file
that “diagnoses” the output variables to add similar support into the new
land surface model. The LIS diagnoseSurfaceOutputVar routine takes
the given model output variable and stores it into LIS’ core output data
structures, which we refer to as diagnosing the output variable.

call LIS_diagnoseSurfaceOutputVar(n, t,LIS_MOC_SWNET,value=soldn * &

(1.0-noah33_struc(n)%noah(t)%albedo),vlevel=1,unit="W/m2",&

direction="DN",surface_type=LIS_rc%lsm_index)

Note that in Noah 3.3, SWnet is derived from solar downward radiation
(soldn) and albedo and that the derivation may be embedded into the call
to diagnose the output variable.

Also note that an output variable may be represented in several units. For
example, soil moisture may be represented in kg/m2 or in m3/m3. Each
units must be diagnosed with its own call to LIS diagnoseSurfaceOutputVar.
See the calls to diagnose LIS MOC SOILMOIST in surfacemodels/land/noah.3.3/noah33 main.F90
for an example.
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8 How to add a new forcing scheme in LIS

The boundary conditions describing the (upper) atmospheric fluxes are known as
“forcings”. LIS makes use of model derived data as well as satellite and ground-
based observational data as forcings. The land surface models are typically
run using model derived data. The observational data are used to overwrite the
model derived data, whenever they are available. In LIS, a scheme that includes
a complete set of variables defined globally and defined in the ALMA forcing
data convention can be used as a “baseforcing”. A scheme/product that is
defined regionally or that includes only a subset of the ALMA forcing convention
should be implemented as a supplemental forcing. Please note that in LIS 7, we
no longer distinguish between a baseforcing and a supplemental forcing. Both
are now refered to as a “metforcing”. When configuring a LIS run, you now
specify, in the lis.config runtime configuration file, all forcing schemes/products
as a list of desired metforcings to use. The first scheme/product in this list must
be a “baseforcing” one.

The plugins directory contains the module LIS metforcing pluginMod that
can be used to customize and define meteorological forcing schemes. This mod-
ule provides the plugin routine LIS metforcing plugin.

LIS metforcing pluginMod provides registries to define functions to perform
the following tasks.

• definition of native domain:
Routines to define the native domain of the forcing data, read run-time
specific parameters through a namelist, etc.

• retrieval of forcing data:
Routines to retrieve the forcing data, and interpolate them.

• temporal interpolation:
Routines to interpolate data temporally.

• finalize:
Routines to cleanup

The following code segment shows how a metforcing scheme is included in
LIS.

call registerinitmetforc(trim(LIS_gdasId)//char(0),init_gdas)

call registerretrievemetforc(trim(LIS_gdasId)//char(0),get_gdas)

call registertimeinterpmetforc(trim(LIS_gdasId)//char(0),timeinterp_gdas)

call registerfinalmetforc(trim(LIS_gdasId)//char(0),finalize_gdas)

Similar to the case in LIS lsm pluginMod, the indices used in the registries
need to be the same for a particular scheme. The LIS gdasId is defined in the
file LIS pluginIndices.F90.
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The input forcing has to be spatially and temporally interpolated to the
LIS grid and the timestep used for LSM simulations. For computational perfor-
mance considerations, spatial interpolation is an expensive operation, primarily
because of the computation of interpolation weights. As a result, spatial inter-
polation is broken up into two steps: (1) computation of interpolation weights
and (2) actual spatial interpolation.

The init gdas routine performs two main functions: (1) to allocate the
required memory structures and read runtime configurable options, and (2) to
setup the interpolation weights required for interpolating the input forcing to
the LIS grid.

The get gdas routine reads the input forcing data based on the model clock
time and interpolates it to the LIS model grid, using the interpolation weights
defined in the init gdas. A number of generic interpolation algorithms (bilin-
ear, conservative, and neighbor) are provided in the src/core directory.

The timeinterp gdas routine temporally disaggregates the spatially inter-
polated forcing data to the model timestep. This step includes the interpolation
of forcing data between two or three forcing data intervals. The disaggregation
is typically a weighted average. For downward shortwave radiation, a zenith
angle-based disaggregation is typically performed.

Finally the finalize gdas specifies the cleanup or deallocation of allocated
memory structures specific to GDAS forcing.

8.1 How to add an additional forcing variable in LIS

LIS provides support for managing many common meteorological forcing fields.
The configs/forcing variables.txt file lists all the forcing fields that LIS supports.
Should a new meteorological forcing scheme introduce a field that is not listed
in the configs/forcing variables.txt file, then additional modifications to the LIS
code are necessary to complete the implementation of the new forcing scheme.
Let’s consider adding incident shortwave radiation SWdown.

1. Add an entry for the new forcing field to the configs/forcing variables.txt
file.

SWdown: 1 1 W/m2 # Incident shortwave radiation (total)

2. Add an entry for the new forcing field to the configs/MODEL OUTPUT LIST.TBL
file.

SWdown_f: 1 W/m2 DN 1 0 0 1 204 10 # Surface incident shortwave radiation

3. Add a new LIS MOC declaration for the new forcing field to the core/LIS histDataMod.F90
file.
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public :: LIS_MOC_SWDOWNFORC

4. Initialize the new LIS MOC entry in the core/LIS histDataMod.F90 file.

integer :: LIS_MOC_SWDOWNFORC = -9999

5. Mimic the logic in the core/LIS histDataMod.F90 file to read the output
configuration file (configs/MODEL OUTPUT LIST.TBL, referred to as
modelSpecConfig) and to call the register dataEntry subroutine.

call ESMF_ConfigFindLabel(modelSpecConfig,"SWdown_f:",rc=rc)

call get_moc_attributes(modelSpecConfig, LIS_histData(n)%head_lsm_list, &

"SWdown_f",&

"surface_downwelling_shortwave_flux_in_air",&

"surface downward shortwave radiation",rc)

if ( rc == 1 ) then

call register_dataEntry(LIS_MOC_LSM_COUNT,LIS_MOC_SWDOWNFORC,&

LIS_histData(n)%head_lsm_list,&

n,1,ntiles,(/"W/m2"/),2,(/"UP", "DN"/),1,1,1,&

model_patch=.true.)

endif

6. Add a new LIS FORC declaration for the new forcing field to the core/LIS FORC AttributesMod.F90
file.

public :: LIS_FORC_SWdown

type(forc_attrib_type) :: LIS_FORC_SWdown

7. Mimic the logic in the core/LIS metforcingMod.F90 file to read the forcing
configuration file (configs/forcing variables.txt, referred to as forcConfig),
to call the add forcing fields subroutine, and to process the variable
for output in the diagnoseForcingOutput subroutine.

call ESMF_ConfigFindLabel(forcConfig,"SWdown:",rc=status)

call get_forcingvar_attributes(forcConfig,LIS_FORC_SWdown,&

"Incident Shortwave Radiation", tnvars,status)

and
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call add_forcing_fields(n,LIS_FORC_State(n),&

LIS_FORC_Base_State(n,:),LIS_forc_SWdown)

and

if(LIS_FORC_SWdown%selectOpt.eq.1) then

do k=1,LIS_FORC_SWdown%vlevels

call ESMF_StateGet(LIS_FORC_State(n),trim(LIS_FORC_SWdown%varname(k)),&

swdField,rc=status)

call LIS_verify(status,&

’error in ESMF_StateGet:SWdown in diagnoseForcingOutput’)

call ESMF_FieldGet(swdField,localDE=0, farrayPtr=swd,rc=status)

call LIS_verify(status,&

’error in ESMF_FieldGet:SWdown in diagnoseForcingOutput’)

do t=1,LIS_rc%ntiles(n)

call LIS_diagnoseSurfaceOutputVar(n,t,LIS_MOC_SWDOWNFORC,value=&

swd(t),vlevel=k,unit="W/m2",direction="DN",&

valid_min = 0.0, valid_max=1360.0)

enddo

enddo

endif
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9 How to add a new domain

STUB

10 How to add a new parameters

STUB

11 How to add a new irrigation scheme

STUB

12 How to add a new routing scheme

STUB
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13 Customizing LIS for data assimilation

The emphasis of land surface data assimilation is to ingest remotely-sensed ob-
servations such as temperature, soil moisture, and snow to adjust the model
representation which is most consistent with the observations. The data assim-
ilation plugins in LIS are designed to support the use and implementation of
different sequential algorithms in land surface model simulations.

The generic data assimilation plugin in LIS is enabled by the combination
of a number of abstractions. There are many different data assimilation algo-
rithms (direct insertion (DI), extended kalman filter (EKF), etc.) that can be
employed. The chosen algorithm is used to update the relevant state variable(s)
of the land surface model being employed. Finally, the observational data used
in assimilation can be obtained from many different sources. Figure 4 shows
the interactions of these three abstractions. LIS core enables the integrated use
of these abstractions through explicitly defined interfaces. All data exchanges
between the data assimilation components are enabled using the constructs pro-
vided by the Earth System Modeling Framework (ESMF; [4]). ESMF provides
a standardized, self-describing format for data exchange between model com-
ponents through the ESMF−State datatype. The three abstractions shown in
Figure 4 exchange information with each other using ESMF−State objects.

The sequential data assimilation techniques typically involve updating the
estimate of the system state at each observation time, based on the measure-
ments up to this time. The overall process can be represented using a number
of equations, as described in this section. Using the notation used in [8], the
nonlinear land surface is represented in the generic form

xk+1 = fk(xk) + wk (1)

where xk represents the state vector at time k, f(.) is the nonlinear operator,
and wk represents the uncertainties due to errors in the model formulation and
boundary conditions. The observations at time k denoted by yk is connected
to the system states by the equation

yk = Hk(xk) + vk (2)

where the operator Hk translates the system states to the measurement vari-
ables. Measurement errors are represented in the term vk. The noises in wk

and vk are typically assumed to be independent random vectors with mean zero
and covariances Qk and Rk, respectively. The difference between the predicted
observation vector and the measurement vector (yk−Hk(xk)) known as the ’in-
novations vector’ is used to make a correction to the system states to generate
an improved state estimate xk+1, known as the analysis, represented by:

xk+1 = xk + K(yk −Hk(xk) + vk) (3)

where K represents the “gain matrix”, which is chosen to ensure that analy-
sis states converge to the true states of the system over time. The model is
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Figure 4: Data assimilation abstractions and their interactions in LIS
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then evolved forward again from the analysis states to the next time where an
observation is available and the process is repeated.

In order to define a custom data assimilation instance, a number of routines
need to be specified in three different registries: (1) LIS dataassim plugin

in LIS dataassim pluginMod that specifies the algorithm for data assimilation,
(2) LIS DAobs plugin in LIS DAobs pluginMod that specifies the observation
for data assimilation and (3) LIS lsmda plugin in LIS lsmda pluginMod that
specifies the LSM related interfaces for data assimilation.

LIS dataassim plugin defines the following registries:

• Init:
Defines routines for initializing memory structures and other initializa-
tions.

• Assimilate/Update:
Method that provides the assimilation/update algorithm.

• Output:
Method to write data assimilation diagnostics to a file

• Finalize:
Method to cleanup allocated memory structures

These methods are registered using a single index for the assimilation algorithm
that corresponds to the implementation.

The data assimilation algorithm implementations interact with the land sur-
face models during the process of modifying and updating the state variables.
The interaction is dependent on the land surface model and the state variable
being updated. To facilitate this interaction, LIS provides a number of plugin
interfaces in the LIS lsmda pluginMod. These interfaces are abstractions of the
querying and updating operations needed to enable interaction with land sur-
face models. Each land surface model used for data assimilation needs to extend
these querying and updating interfaces, in addition to the interfaces pertaining
to the basic operation of a land surface model described in section 7. A list of
the required interfaces for each LSM are listed below.

• get state variables method to package the list of prognostic variables into
an ESMF State.

• set state variables method to translate the given ESMF state and update
the prognostic state variables.

• QC LSM state method to QC a given ESMF state (check bounds, physical
consistency, etc)

• define “obspred” method to that defines the “obspred”, which is the
model’s prediction of what the observations should be.

• Scale LSM state method to scale the LSM variables, if needed, so that the
matrices used in an algorithm such an EnKF are well formed.
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• descale LSM state opposite of the scaling method, to convert variables
back to the original space.

• update LSM state This routine specifies how the analysis increments are
to be applies. The routine provides flexibility in applying the increments
to the selective list of variables.

These methods are registered using two indices. 1. index for the land surface
model and 2. “Assimilation set”, which refers to a combination of observation
and the variables being updated. For example, AMSR-E soil moisture obser-
vation to update Noah LSM variables, AMSR-E soil moisture observations to
update Catchment LSM variables and MODIS snowcover observations to update
Noah LSM variables constitute different assimilation sets.

Another generalization associated with the data assimilation operations is
related to the handling of the observational data. The generic plugins imple-
mented in LIS for this are designed similar to the handling of other (parameter,
forcing) datasets.

The method LIS DAobs plugin defined in LIS DAobs pluginMod defines the
registries for the functions related to observation handling. LIS DAobs plugin
defines the following registries:

• Setup:
Defines routines for initializing memory structures and other initializa-
tions.

• Reading method:
Method that reads the observation data and packages it into an ESMF
state

• Get number of selected observations:
Returns the number of selected observations to be used for a single grid
point.

These methods are registered using a single index for the assimilation set that
corresponds to the method.
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14 “Use only what you need”

A key advantage of the use of function tables for simulating polymorphism is
the ability to use only the components that are needed. The “plug and play”
of different components allows LIS to remain flexible, rather than evolve into a
monolithic software when new components and features are added. This section
describes how to compile and use only the needed components.

14.1 Defining source directories for compilation

A file called Filepath in the src/make directory specifies all the source files that
will be included during compilation. A sample Filepath is shown below.

../core

../plugins

../domains/latlon

../domains/gaussian

../domains/polar

../domains/lambert

../domains/merc

../domains/catchment

../domains/gaussian

../domains/UTM

../domains/hrap

../runmodes/retrospective

../runmodes/wrf_cpl_mode

../runmodes/smootherDA

../params/gfrac/NESDISWeekly

../params/gfrac/SPORTDaily

../params/lai/MODIS_RT

../interp

../metforcing/templateMetForc

../metforcing/gdas

../metforcing/geos

../metforcing/geos5fcst

../metforcing/ecmwfreanal

../metforcing/ecmwf

../metforcing/gswp2

../metforcing/gswp1

../metforcing/princeton

../metforcing/rhoneAGG

../metforcing/gldas

../metforcing/gfs

../metforcing/merra-land

../metforcing/PILDAS

../metforcing/nldas1
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../metforcing/nldas2

../metforcing/stg2

../metforcing/stg4

../metforcing/rdhm356

../metforcing/cmap

../metforcing/agrrad

../metforcing/agrradps

../metforcing/3B42RT

../metforcing/3B42V6

../metforcing/3B42V7

../metforcing/cmorph

../metforcing/ceop

../metforcing/scan

../metforcing/narr

../metforcing/gdasLSWG

../metforcing/Bondville

../metforcing/RFE2Daily

../metforcing/snotel

../metforcing/coop

../metforcing/vicforcing.4.1.2

../metforcing/RFE2gdas

../metforcing/PALSmetdata

../metforcing/pet_usgs

../metforcing/nam242

../metforcing/WRFout

../surfacemodels/land/template

../surfacemodels/land/noah.2.7.1

../surfacemodels/land/noah.2.7.1/da_snodep

../surfacemodels/land/noah.2.7.1/routing_nldas

../surfacemodels/land/noah.3.2

../surfacemodels/land/noah.3.3

../surfacemodels/land/noah.3.3/cpl_wrf_noesmf

../surfacemodels/land/noah.3.3/da_snow

../surfacemodels/land/noah.3.3/da_snodep

../surfacemodels/land/noah.3.3/da_soilm

../surfacemodels/land/noah.3.3/routing

../surfacemodels/land/noah.3.3/pe

../surfacemodels/land/noah.3.3/pe/obspred/ARMS

../surfacemodels/land/noah.3.3/pe/obspred/LPRM_AMSREsm

../surfacemodels/land/noah.3.3/pe/obspred/USDA_ARSsm

../surfacemodels/land/noah.3.3/pe/obspred/FLUXNET

../surfacemodels/land/noah.3.3/sfc_crtm/

../surfacemodels/land/noah.3.3/sfc_cmem3/

../surfacemodels/land/noah.3.3/sfc_tauomega/

../surfacemodels/land/noah.3.3/irrigation

../surfacemodels/land/clm2
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../surfacemodels/land/clm2/main

../surfacemodels/land/clm2/biogeophys

../surfacemodels/land/clm2/ecosysdyn

../surfacemodels/land/clm2/cpl_wrf_noesmf

../surfacemodels/land/clm2/csm_share

../surfacemodels/land/clm2/da_lst

../surfacemodels/land/clm2/da_snow

../surfacemodels/land/clm2/da_soilm

../surfacemodels/land/clsm.f2.5

../surfacemodels/land/clsm.f2.5/routing_nldas

../surfacemodels/land/clsm.f2.5/da_soilm

../surfacemodels/land/clsm.f2.5/da_snow

../surfacemodels/land/clsm.f2.5/da_tws

../surfacemodels/land/clsm.f2.5/irrigation

../surfacemodels/land/mosaic

../surfacemodels/land/mosaic/da_soilm

../surfacemodels/land/mosaic/sfc_cmem3

../surfacemodels/land/hyssib

../surfacemodels/land/cable/physics

../surfacemodels/land/cable/cpl_wrf_noesmf

../surfacemodels/land/geowrsi.2

../surfacemodels/land/vic.4.1.2.l

../surfacemodels/land/vic.4.1.2.l/physics

../surfacemodels/land/rdhm.3.5.6

../surfacemodels/land/rdhm.3.5.6/sac

../surfacemodels/land/rdhm.3.5.6/frz

../surfacemodels/land/rdhm.3.5.6/snow17

../surfacemodels/land/rdhm.3.5.6/sachtet

../surfacemodels/openwater/template/

../routing/NLDAS_router

../routing/HYMAP_router

../dataassim/perturb/gmaopert

../dataassim/algorithm/di

../dataassim/algorithm/enkf

../dataassim/algorithm/enksgrace

../dataassim/biasEstimation/gmaoBE

../dataassim/obs/ANSA_SCF

../dataassim/obs/MODISsca

../dataassim/obs/NASA_AMSREsm

../dataassim/obs/LPRM_AMSREsm

../dataassim/obs/ECV_sm

../dataassim/obs/WindSat_sm

../dataassim/obs/PMW_snow

../dataassim/obs/GRACE

../dataassim/obs/RT_SMOPSsm

../irrigation/sprinkler
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14.2 Defining components while building the executable

As described in the previous sections, the specific instances of each customizable
interface in LIS are defined in different registries. Once the user specifies the
components to be used in these interfaces, the Filepath directory can be modified
to include only these components. For example, if a user is interested in running
only one land surface model (say Noah 3.3) and does not want to keep and
compile other land surface models, the Filepath can be modified to indicate
that only Noah 3.3 needs to be compiled as follows (Note that the template,
hysibb, clm2, mosaic, clsm.f2.5, noah.2.7.1, noah.3.2, geowrsi.2, vic.4.1.2.l, and
rdhm.3.5.6 directories have been removed from the above Filepath):

../core

../plugins

../domains/latlon

../domains/gaussian

../domains/polar

../domains/lambert

../domains/merc

../domains/catchment

../domains/gaussian

../domains/UTM

../domains/hrap

../runmodes/retrospective

../runmodes/wrf_cpl_mode

../runmodes/smootherDA

../params/gfrac/NESDISWeekly

../params/gfrac/SPORTDaily

../params/lai/MODIS_RT

../interp

../metforcing/templateMetForc

../metforcing/gdas

../metforcing/geos

../metforcing/geos5fcst

../metforcing/ecmwfreanal

../metforcing/ecmwf

../metforcing/gswp2

../metforcing/gswp1

../metforcing/princeton

../metforcing/rhoneAGG

../metforcing/gldas

../metforcing/gfs

../metforcing/merra-land

../metforcing/PILDAS

../metforcing/nldas1

../metforcing/nldas2

../metforcing/stg2
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../metforcing/stg4

../metforcing/rdhm356

../metforcing/cmap

../metforcing/agrrad

../metforcing/agrradps

../metforcing/3B42RT

../metforcing/3B42V6

../metforcing/3B42V7

../metforcing/cmorph

../metforcing/ceop

../metforcing/scan

../metforcing/narr

../metforcing/gdasLSWG

../metforcing/Bondville

../metforcing/RFE2Daily

../metforcing/snotel

../metforcing/coop

../metforcing/vicforcing.4.1.2

../metforcing/RFE2gdas

../metforcing/PALSmetdata

../metforcing/pet_usgs

../metforcing/nam242

../metforcing/WRFout

../surfacemodels/land/noah.3.3

../surfacemodels/land/noah.3.3/cpl_wrf_noesmf

../surfacemodels/land/noah.3.3/da_snow

../surfacemodels/land/noah.3.3/da_snodep

../surfacemodels/land/noah.3.3/da_soilm

../surfacemodels/land/noah.3.3/routing

../surfacemodels/land/noah.3.3/pe

../surfacemodels/land/noah.3.3/pe/obspred/ARMS

../surfacemodels/land/noah.3.3/pe/obspred/LPRM_AMSREsm

../surfacemodels/land/noah.3.3/pe/obspred/USDA_ARSsm

../surfacemodels/land/noah.3.3/pe/obspred/FLUXNET

../surfacemodels/land/noah.3.3/sfc_crtm/

../surfacemodels/land/noah.3.3/sfc_cmem3/

../surfacemodels/land/noah.3.3/sfc_tauomega/

../surfacemodels/land/noah.3.3/irrigation

../surfacemodels/openwater/template/

../routing/NLDAS_router

../routing/HYMAP_router

../dataassim/perturb/gmaopert

../dataassim/algorithm/di

../dataassim/algorithm/enkf

../dataassim/algorithm/enksgrace

../dataassim/biasEstimation/gmaoBE

36



D
RA

FT

../dataassim/obs/ANSA_SCF

../dataassim/obs/MODISsca

../dataassim/obs/NASA_AMSREsm

../dataassim/obs/LPRM_AMSREsm

../dataassim/obs/ECV_sm

../dataassim/obs/WindSat_sm

../dataassim/obs/PMW_snow

../dataassim/obs/GRACE

../dataassim/obs/RT_SMOPSsm

../irrigation/sprinkler

Correspondingly, the LIS lsm plugin method in src/plugins/LIS lsm pluginMod.F90
needs to be defined as (excluding other land models from the registry):

subroutine LIS_lsm_plugin

use LIS_pluginIndices

use noah33_lsmMod, only : noah33_lsm_ini

external noah33_main

external noah33_setup

external noah33_readrst

external noah33_dynsetup

external noah33_f2t

external noah33_writerst

external noah33_finalize

call registerlsminit(trim(LIS_noah33Id)//char(0),noah33_lsm_ini)

call registerlsmsetup(trim(LIS_noah33Id)//char(0),noah33_setup)

call registerlsmf2t(trim(LIS_noah33Id)//"+"&

//trim(LIS_retroId)//char(0),noah33_f2t)

call registerlsmrun(trim(LIS_noah33Id)//char(0),noah33_main)

call registerlsmrestart(trim(LIS_noah33Id)//char(0),noah33_readrst)

call registerlsmdynsetup(trim(LIS_noah33Id)//char(0),noah33_dynsetup)

call registerlsmwrst(trim(LIS_noah33Id)//char(0),noah33_writerst)

call registerlsmfinalize(trim(LIS_noah33Id)//char(0),noah33_finalize)

end subroutine LIS_lsm_plugin

Note that when include or excluding specific land surface models, you must
make similar changes to these files: LIS lsmcpl pluginMod.F90, LIS lsmda pluginMod.F90,
LIS lsmirrigation pluginMod.F90,
LIS lsmoptue pluginMod.F90, LIS lsmrouting pluginMod.F90, and LIS lsmrtm pluginMod.F90.

Similarly, different combinations of using the components can be imple-
mented defining the registries appropriately and specifying the corresponding
source files in the Filepath file.
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